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mately 1.5. If the Iowest vahre of I rL \ is

sufficiently small, the reflection from the thin
dielectric tube may be equal to, or larger
than, this value and no bead is required to
give a matched condition. The reflection
from the thin dielectric tube can be calcu-

lated by first calculating the equivalent di-

electric constant of the medium in the trans-

mission line where the tube is located and

then by computing j r~ ] from the equation

In Fig. 5, the quantity I rl I is plotted as a
function of dielectric constant, over a real-
istic range of values. The use of a bead that
only partially fills the coaxial line (or no
bead at all) is desireable because it increases
the stability of the instrument at very low

values of reflection coefficient.
One significant result that has been ob-

tained in using the very low-reflection slid-

ing terminations is the capability to tune

the reflectometer down to the point where

the uonuniformities of the precision coaxial
line become the limiting factor in the tuning

operation, and hence the limiting factor in
obtainable accuracy of a reflection coeffi-
cient measurement. In this light, the sliding

termination should be very useful in evaluat-

Fig. 3—$-inch adjustable slid ing termination.

Fig. 4—+-inch adjustable sliding termination.
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Fig. 5—Graph of (5).

ing the uniformity of coaxial lines as well as

for improving the present obtainable ac-
curacy of coaxial reflectometer rrleasure-
ments.
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Approximate Method of Determining

the Cutoff Frequencies of Wave-

guides of Arbitrary Cross S~ection

THEOKY

Electromagnetic propagation in a long,

prismatic waveguide obeys the scalar

Helmholtz equation

–vV = K~

where

* =a potential function

K = frequency parameter
—VZ = positive definite plane Laplacian

operator.

If the boundary is a curve natural to
any of the common coordinate systems for
which Helmholtz equation separates, the

solutions can be derived by classical meth-

ods and may be expressed in terms of known

transcendental functions. For the wave-

guides having more complicated cross sec-

tions, however, the cutoff frequencies can
only be approximately determined. There

are, however, some technical advantages in
using these more complicated cross sections.
In circular waveguides because of the axi-
symmetrical field configurations, the waves
do not have directional stability but tend to
shift in phase intermittently, producing fad-
ing and other undesirable consequences. To
minimize this effect one or more Iogitudinal

short vanes are sometimes installed on the
wall to ‘[lock” the modes in prescribed di-

rections, These vanes change the (cutoff fre-

quencies in the waveguide by an appreciable

amount. This correspondence shows that it
is advantageous to conformably transform
the complicated cross section onto a simpler
one, (i. e., the unit circle) where the boundary

conditions can be easily satisfied. Transfor-
mation functions for many common curves

are available in standard references. 1.z For
other curves, approximate transformation
function can be determined by the series

method, ! Once the transformation, function

is known, the problem is reduced to the
solution of the transformed eqj~ation as

follows :

(1)

where z =~(f): the transformation function.
Many methods are available to solve the

above equation approximately. Among
them, the collocation method is perhaps the
simplest. If greater accuracy of the approxi-
mate frequency parameter is desired, one
may use the iteration tech nique suggested

by Temple.3 The first iteration c,m be ex-
pressed in terms of upper and low,sr bounds

as follows:
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where u and v are two functions which sat-
isfy the boundary conditions and are related

by

—vz~ = ~, (3)

Kz is the estimated frequency parameter of

the first harmonic and KL is the parameter
which determines the lowest frequency cut-

off point. In this discussion, only the case

of the TM waves ($= O at the boundary) is
considered. The case of the TE waves
merely requires a straight forward modifica-

tion of the method.

APPLICATIONS

A. Rectangula~ Waveguide

This case is treated here in order to il-
lustrate the method, The transformation

function which maps a square region whose

sides are 2a by 2a onto a unit circle is

f
z=A .a ‘(1+$4) -LW&A =1.08 and$=re~8.

0

The solution of the transformed partial dif-
ferential equation can be expressed by means

of a complete set of eigenfunctions

. .

IJ(r, @ = Re z z B.d.(k.Je<ne
m=o .=0

where knm satisfies the boundary condition

J.(k.mr) 1,-, = O.

As a first approximation we take

+(Y, 0) - W(r) = ~ BOJO (K,mr).

.,=0

Substitution of the above function into (1)
gives the error distribution,

~.

c(7, 0) = ~ Bom.Jo(ko,mr)
7J=1

. [k,~’(1 +2@ cos 40 + ?’8)’” + (1.08) ’a2K2].

We observe that ,(r, .9) varies periodically
with 6’. For simplicity we assume that the
mean error does not differ much from (r,

rr/8). We arbitrarily choose five points. The
computed first two frequency parameters

are

2.236
K,=—

5.178
Kz=—

a a

which compare favorably with the exact

values from the closed form solutions which
are

2.2214
K,=—

4.9673
A72 = —— .

a a
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Fig. I—Approximation of one-vaned waveguide by cardioid.
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Fig. Z—Approximation of four-varied Wavewide by epitrochoid.

B. Circular Wuveguide witl~ One Vane

The transformation function for this

configuration is difficult to determine. As a
first approximation we represent the shape
by a cardioid. The comparison of the wave
guide and the mathematical model is shown
in Fig. 1. The transformation function
which maps a cardioid onto a uuit circle is

~ = R(g + *:2).

By a procedure similar to that used in Case

A we find

2.163 4.681
KI = —R— ; K2 =7.

Based on Case A, we can infer that the

results may be a few per cent too high. It
is interesting to note that the fundamental
frequency of the circular guide without
vanes (radius 1.23R) is about 1.96/R. Com-
paring the corresponding results, we can
conclude that the fundamental frequencies
of a circular unvaued guide and varied guide
may difi”er as much as 10 per cent.

C. Ci~cular Waneguides with Four Dz’a-

phragwls

The shape of four-varied circular guides

may be represented by an epitrochoid (Fig.
2). The transformation function is
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z = R(g + +5”).

BY a procedure similar to the tone used ill

Case A, we obtain the following frequency

parameters:

2.388
k-l . — 5.382

R
K-, == —K— .

In this case we have also usecl the bounding
technique (2) to obtain a more accurate
answer. After the necessarj integration we
obtain

2.384
—<h”l<~::.

R

The exact frequency parameter can be

estimated with great certainty. A compari-

son can be made with an u uvaued wa\-e-

guide whose radius is about 1[.2. The vaned

waveguide whose cross section is represent-

able by an epitrochoid has a fuudameutal
frequency parameter about 20 per ceut
higher than that of the corresponding unvan-
ed waveguide.

CONCLUDING REMARKS

The method described in this corre-

spondence appears to be suitable to estimate

the frequency parameters of any arbitrarily
shaped waveguide providecl that the trans-

formation function needed to map the sec-
tion into a circular region :a n be obtai ued.
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Design Problems and l?erformance

of Millimeter-Wave Fabry-Perot

Reflector Plates

The parallel plate Fabry-Perot inter-

ferometer and its application have been

described by several authors. 1-5 It is par-


