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mately 1.5. If the lowest value of |I'.] is
sufficiently small, the reflection from the thin
dielectric tube may be equal to, or larger
than, this value and no bead is required to
give a matched condition. The reflection
from the thin dielectric tube can be calcu-
lated by first calculating the equivalent di-
electric constant of the medium in the trans-
mission line where the tube is located and
then by computing |I:] from the equation

o) =¥ = )

In Fig. 5, the quantity |I] is plotted as a
function of dielectric constant, over a real-
istic range of values. The use of a bead that
only partially fills the coaxial line (or no
bead at all) is desireable because it increases
the stability of the instrument at very low
values of reflection coefficient.

One significant result that has been ob-
tained in using the very low-reflection slid-
ing terminations is the capability to tune
the reflectometer down to the point where
the nonuniformities of the precision coaxial
line become the limiting factor in the tuning
operation, and hence the limiting factor in
obtainable accuracy of a reflection coeffi-
cient measurement. In this light, the sliding
termination should be very useful in evaluat-

Fig. 3—3%-inch adjustable sliding termination.

Fig. 4—%-inch adjustable sliding termination.
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Fig. 5—Graph of (5).

ing the uniformity of coaxial lines as well as

for improving the present obtainable ac-

curacy of coaxial reflectometer measure-
ments.
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Approximate Method of Determining
the Cutoff Frequencies of Wave-
guides of Arbitrary Cross Section

THEORY

Electromagnetic propagation in a long,

prismatic waveguide obeys the scalar
Helmholtz equation

—v = K%
where

¥ =a potential function
K =frequency parameter
—V2=positive definite plane Laplacian
operator.

If the boundary is a curve natural to
any of the common coordinate systems for
which Helmholtz equation separates, the
solutions can be derived by classical meth-
ods and may be expressed in terms of known
transcendental functions. For the wave-
guides having more complicated cross sec-
tions, however, the cutoff frequencies can
only be approximately determined. There
are, however, some technical advantages in
using these more complicated cross sections.
In circular waveguides because of the axi-
symmetrical field configurations, the waves
do not have directional stability but tend to
shift in phase intermittently, producing fad-
ing and other undesirable consequences. To
minimize this effect one or more logitudinal
short vanes are sometimes installed on the
wall to “lock” the modes in prescribed di-
rections. These vanes change the cutoff fre-
quencies in the waveguide by an appreciable
amount. This correspondence shows that it
is advantageous to conformally transform
the complicated cross section onto a simpler
one, (7.e., the unit circle) where the boundary
conditions can be easily satisfied. Transfor-
mation functions for many common curves
are available in standard references.’-? For
other curves, approximate transformation
function can be determined by the series
method.? Once the transformation function
is known, the problem is reduced to the
solution of the transformed equation as
follows:

dk
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where z=/f({): the transformation function.
Many methods are available to solve the
above equation approximately. Among
them, the collocation method is perhaps the
simplest. If greater accuracy of the approxi-
mate frequency parameter is desired, one
may use the iteration technique suggested
by Temple.? The first iteration can be ex-
pressed in terms of upper and lower bounds
as follows:
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where # and v are two functions which sat-
isfy the boundary conditions and are related
by

—Vi = 0. 3)

K, is the estimated frequency parameter of
the first harmonic and K, is the parameter
which determines the lowest frequency cut-
off point. In this discussion, only the case
of the TM waves (¢ =0 at the boundary) is
considered. The case of the TE waves
merely requires a straight forward modifica-
tion of the method.

APPLICATIONS

A. Rectangular Waveguide

This case is treated here in order to il-
lustrate the method. The transformation
function which maps a square region whose
sides are 2a by 2a onto a unit circle is

£
z=A -af (14-£5-12dg; A =1.08and £=ref,
0

The solution of the transformed partial dif-
ferential equation can be expressed by means
of a complete set of eigenfunctions

¥(r,0) = Re 2_ 2° BunJu(lnm)e™
m=0 n=0
where k.., satisfies the boundary condition
TulClnir) Jrz = 0.
As a first approximation we take
W(r, 8) ~ W(r) = D BowJo (Komr).
m=0

Substitution of the above function into (1)
gives the error distribution,

N
e(r, 8) = Z BomJ o(komr)
m=1

[kam?(1 + 274 cos 40 + r5)H/2 + (1.08)%a2K2].

We observe that (7, ) varies periodically
with 6. For simplicity we assume that the
mean error does not differ much from (7,
7/8). We arbitrarily choose five points. The
computed first two frequency parameters
are

2,236 5.17
K, = 178
a a

K1=

which compare favorably with the exact
values from the closed form solutions which
are

4.9673

2=

_2.2214
a

1
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Fig. 1—Approximation of one-vaned waveguide by cardioid.
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Fig. 2—Approximation of four-vaned waveguide by epitrochoid.

B. Circular Waveguide with One Vane

The transformation function for this
configuration is difficult to determine. As a
first approximation we represent the shape
by a cardioid. The comparison of the wave
guide and the mathematical model is sho_wn
in Fig. 1. The transformation function
which maps a cardioid onto a unit circle is

z = R+ 3£,

By a procedure similar to that used in Case
A we find

2.163
K, = “E“?

o L08
TR

Based on Case A, we can infer that the
results may be a few per cent too high. It
is interesting to note that the fundamental
frequency of the circular guide without
vanes (radius 1.23R) is about 1.96/R. Com-
paring the corresponding results, we can
conclude that the fundamental frequencies
of a circular unvaned guide and vaned guide
may differ as much as 10 per cent.

C. Circular
phragms

Waveguides with Four Dia-

The shape of four-vaned circular guides
may be represented by an epitrochoid (Fig.
2). The transformation function is
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5= RE+ ).

By a procedure similar to the tone used in
Case A, we obtain the following frequency
parameters:

In this case we have also used the bounding
technigue (2) to obtain a more accurate
answer. After the necessary integration we
obtain

2.384 .3
2k < 28
R K

The exact frequency parameter can be
estimated with great certainty. A compari-
son can be made with an unvaned wave-
guide whose radius is about 1.2. The vaned
waveguide whose cross section is represent-
able by an epitrochoid has a fundamental
frequency parameter about 20 per cent
higher than that of the corresponding unvan-
ed waveguide.

CONCLUDING REMARKS

The method described in this corre-
spondence appears to be suitable to estimate
the frequency parameters of any arbitrarily
shaped waveguide provided that the trans-
formation function needed to map the sec-
tion into a circular region can be obtained.
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Design Problems and Performance
of Millimeter-Wave Fabry-Perot
Reflector Plates

The parallel plate Fabry-Perot inter-
ferometer and its application have been
described by several authors,’=5 It is par-
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